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Abstract The blending problem is studied as a problem of finding cheap robust feasible
solutions on the unit simplex fulfilling linear and quadratic inequalities. Properties of a reg-
ular grid over the unit simplex are discussed. Several tests based on spherical regions are
described and evaluated to check the feasibility of subsets and robustness of products. These
tests have been implemented into a Branch-and-Bound algorithm that reduces the set of
points evaluated on the regular grid. The whole is illustrated numerically.
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1 Introduction

Consider the following formulation of a mixture design problem which actually consists
of identifying mixture products, each represented by a vector x ∈ R

n , which meet certain
requirements. The set of possible mixtures is mathematically defined by the unit simplex

S =
⎧
⎨

⎩
x ∈ R

n |
n∑

j=1

x j = 1.0; 0 ≤ x j ≤ 1

⎫
⎬

⎭
, (1)
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where the variables x j represent the fraction of the components in a product x . In mixture
design (blending) problems, the objective is to minimise the cost of the material,

f (x) = cT x, (2)

where vector c gives the cost of the raw materials. In practical situations, such problems are
solved on a daily base in fodder and petrochemical industry where often requirements are
modelled by linear inequalities, see e.g., [15]. The current article is a result from a larger
project on product design at Unilever Research. Products that are produced in large quantities
require extensive testing and careful designing where many aspects such as robustness, cost,
choice and availability of raw materials, etc. are important. Here, we focus on methods to
generate so-called ε-robust solutions, i.e., small deviations from the design will still lead to
acceptable products.

In the model under study, linear inequality constraints and bounds define the design space
X ⊂ S. The requirements are defined as quadratic inequalities

gi (x) = xT Ai x + bT
i x + di ≤ 0; i = 1, . . . , m, (3)

in which Ai is a symmetric n by n matrix, bi is an n-vector and di is a scalar. In this way we
formulate the problem to be solved as finding elements of the set of “satisfactory” (feasible)
products

D = {x ∈ S | gi (x) ≤ 0; i = 1, . . . , m}. (4)

Finding a point x ∈ X ∩ D defines the quadratic mixture design problem (QMDP), as studied
in [6].

In the practical setting the problem originates from, besides optimising the linear objective
function, the search for feasible solutions can be approached by running standard solvers on
a penalty reformulation:

min
x∈X

{max
i

gi (x)} (5)

or

min
x∈X

{
∑

i

max[gi (x), 0]
}

. (6)

The challenging aspect is that solving (5) or (6) is a global optimisation problem. This means
that applying a standard solver, using several starting points may result into local optima that
are all bigger than zero, i.e., no feasible solution of (3) is attained. In that case, one cannot
assure that no feasible solution exists.

From practical considerations, this problem was extended towards robust solutions. One
can define robustness R(x) of a design x ∈ D with respect to D as

R(x) = max{R ∈ R
+ | (x + h) ∈ D, ∀h ∈ R

n, ‖h‖ ≤ R}. (7)

Notice that for mixture problems x + h is projected on the unit simplex. In [7] an analytical
expression of the robustness for linear mixture design problems is given and it is shown that
for quadratic inequalities this is not straightforward. One should find the nearest infeasible
point to x and no analytic expression exists to determine this point, such that algorithms
as described in [4] are needed. Moreover, [7] shows that determining the point with maxi-
mum robustness R(x) becomes a Global optimisation problem. We are merely interested in
methods for finding an ε-robust solution with minimum cost, i.e.
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Fig. 1 Two-dimensional
projection of regular grid over the
three-dimensional unit simplex,
M = 5

(1, 0, 0)(0, 1, 0)

(0, 0, 1)

min f (x) (Cost (2))

s.t. x ∈ X ∩ D (Feasibility (4))

R(x) ≥ ε (Robustness (7)).

(8)

Moreover, we would like to develop an algorithm that is able to identify problems that do
not contain ε-robust solutions. The developed algorithm is based on the Branch-and-Bound
concept applying simplicial partition sets. Several options are described and tested on how
to check feasibility of a subset and on how to determine lower bounds on the robustness.
Theoretical results are presented with respect to areas of the search space that do not contain
a feasible point.

In Sect. 2, the algorithm is sketched and the used bisection process is analysed. Results
are given on bounds on the number of points that are evaluated. In Sect. 3, ways to test the
infeasibility of partition sets are described and theoretical results are presented. Section 4
describes ways to check the ε-robustness. Numerical illustrations with cases derived from
industry are shown in Sect. 5. Finally conclusions are drawn in Sect. 6.

2 Algorithms for finding a solution

One approach, as sketched before, is to run nonlinear optimisation routines on penalty for-
mulation (5) or (6) meanwhile minimising the linear objective function (2). However, if the
final penalty answer is greater than zero (gi (x) > 0), the statement “no solution exists”
cannot be given with absolute certainty. Given a certain accuracy, one can guarantee to detect
cases that do not contain solutions. This is done by evaluating all the points on a regular grid
over the unit simplex as sketched in Fig. 1. As will be outlined in Sect. 3, one can prove that
no feasible solution exists, if the obtained function values gi are “high enough”. Moreover,
we can also conclude that there is no ε-robust solution when every evaluated feasible point
has an infeasible neighbour at a distance less than ε on the regular grid. However, checking
robustness requires additional procedures as those described in Sect. 4.

Consider a regular grid with M equal distant values for each axis, resulting in a mesh size
of α = 1/(M −1). A strategy to evaluate all grid points is not appealing, as it is not efficient.
When performed on a unit box, the number of function evaluations grows exponentially with
the dimension: Mn . This is not that bad on the unit simplex, as we are dealing with the
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mixture equality (see (1) and Fig. 1). It can be verified that the total number of points on the
grid is given by

n−1∑

k=1

(
M
k

) (
n − 2
k − 1

)

, (9)

as shown in Appendix 1. This means that the number of points increases rapidly. For the
example in Fig. 1, n = 3 and M = 5, we have 15 grid points and an “accuracy” of α = 0.25.

An appealing alternative for solving (8) is to use a Branch-and-Bound strategy. The con-
cept of Branch-and-Bound is not to generate all the points, but to partition the area and avoid
visiting those regions (partition sets) which are known not to contain an optimal ε-robust
solution. B&B methods can be characterized by four rules: Branching, Selection, Bounding,
and Elimination [10,12]. For problems like (8), where the number of points can be infinite,
a termination criterion has to be incorporated; i.e, one has to establish a sampling precision.

In the Branch-and-Bound method, the initial problem is subsequently partitioned in more
and more refined subproblems (branching) over which bounds of an objective function value,
and in our case, bounds on the constraint functions can be determined (bounding). The search
is reduced by eliminating subproblems. One of the elimination rules used here is based on
defining a global upper bound f U as the objective function value of the best ε-robust solution
found so far. Subsets with a lower bound f L

k of the objective function larger than the upper
bound can be discarded, because they cannot contain an optimal solution.

A possible algorithm based on bisection is outlined in Algorithm 1. The method starts with
a set C1 = S as the first element of a list � of subsets (partition sets) and stops when the list �
is empty. A generated subset is not stored on �, if it can be proven that it is infeasible and/or
cannot contain an ε-robust solution. In Sect. 3, theoretical results on proving infeasibility are
discussed. Section 4 concerns the determination of robustness of individual points.

The size of a simplex (Size(C)) is given by the Euclidian length of its largest edge. To force
theoretical convergence, the termination rule establishes that the search does not continue on
partition sets smaller in size than α ≤ ε. If a simplex reaches the termination criterion and all
vertices are feasible, but not proven ε-robust, one cannot certify anymore that the problem
has no ε-robust solution. In Algorithm 1, this is traced by a flag “NoSolutionExists” that has
the value True when the problem has no ε-robust solution, i.e., all the simplices were rejected
by one of the elimination rules before the termination criterion was applied to a simplex with
feasible vertices.

The branching concerns the further refinement of the partition. This means that one of
the subsets is selected to be split into new subsets. The use of simplicial sets in Branch-and-

Fig. 2 Bisection process.
Two-dimensional projection
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Algorithm 1 : Branch-and-Bound algorithm
Inputs: X : linearly bounded design space

c j : cost of component j
gi : constraint functions
ε: accuracy on robustness
α: accuracy of search. (α ≤ ε)

Output: ε-robust solution xU , “No solution found” or “No solution exists”
Funct B&B Algorithm

1. � := ∅ Work list
2. f U := max j c j Upper bound of the solution

3. xU := 0 ε-robust solution product
4. C1 = S Unit simplex
5. NoSolutionExists=True
6. for the vertices v ∈ C1 EvaluateVertex(v)
7. EvaluateSimplex(C1)
8. while � 	= ∅
9. Take one subset C from list � according to a selection rule.

Subdivide C into two new subsets Cnew1 and Cnew2 by splitting
over the longest edge, generating new point vnew .

10. EvaluateVertex(vnew),
11. EvaluateSimplex(Cnew1), EvaluateSimplex(Cnew2)
12. if xU = 0
13. if NoSolutionExists
14. return “No solution exists”
15. else
16. return “No solution found”
17. else return xU

Algorithm 2 : Evaluate subset, decide to put on list based on lower bounds

Funct EvaluateSimplex (Ck ); global �, f U , α ≤ ε, NoSolutionExists

1. f L
k := minv∈Ck {cT v}

2. if f L
k ≤ f U Pruning

3. Infeasibility check on Ck See Sect. 3
4. if Ck not proven to be infeasible
5. if si ze(Ck ) > α Stopping criteria
6. store Ck in �

7. elsif all vertices of Ck are feasible
8. NoSolutionExists=False

Bound and several ways of splitting them has been studied extensively in [3,9]. Algorithm 1
bisects the longest edge of the selected simplex. An advantage of this kind of bisection is that
the sets never get a needle shape. Starting with the unit simplex, for all the generated simpli-
ces the length of the longest edge is at most twice the size of the shortest edge. A selection
rule determines the subset to be split next. The cheapest simplex (with lowest average cost)
is selected, trying to improve the value of f U . Figure 2 sketches the idea of the bisection
algorithm. It can be observed that points on a regular grid are generated, but that the bisection
also generates edges (dotted lines) in at least one additional direction other than the facets of
the unit simplex. The values of all generated points are a multiple of (1/2)K , where K is an
integer representing the depth of the search tree.

The number of simplices that Algorithm 1 generates (and stores) in the worst case, depends
on many aspects. We could derive an upper bound on the worst case performance. In the worst
case, rules lead to splitting and storing simplices that have a size slightly larger than α. After
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Algorithm 3 : Evaluate a point and update global information.

Funct EvaluateVertex (v); global �, f U , xU

1. Determine f (v) = cT v and gi (v), i = 1, . . . , m
2. Check whether v ∈ X ∩ D Evaluate linear and quadratic feasibility of v

3. if f (v) < f U

4. if v ∈ X and is ε-robust See Sect. 4
5. f U := f (v) and xU := v Update global information
6. Remove all Ck ∈ � such that f L

k > f U Cutoff test

going n(n − 1)/2 levels deeper in the search tree, at least all edges have been halved and the
size of the simplex is less or equal than half its original size. Suppose Size(C1) = 1 (infinity
norm distance). The maximum number K of halving the simplices is given by 1/2K ≤ α,
such that K = 
(− ln(α)/ ln(2))�, where 
y� is the lowest integer greater than or equal to y.
Given the number of edges per simplex n(n − 1)/2, the maximum depth of the search tree is
K × n(n − 1)/2. The final level is not stored, as the simplices do not pass the size test. An
overestimate for the worst case number of simplices on the list is:

2K×n(n−1)/2−1, (10)

where K = 
(− ln(α)/ ln(2))�. This analysis provides a guarantee that the algorithm is
finite given an accuracy α. We will observe in the experiments that practically the num-
ber of simplices the algorithm generates and evaluates is much lower. The real success of
Branch-and-Bound depends on how early branches of the tree can be pruned.

3 Infeasibility check

After verifying that all vertices v ∈ C are infeasible, one would like to test whether C is
completely infeasible. In [6], one constructs a lower bound gL ≤ g(x), x ∈ C on C for
quadratic function g(x) = xT Ax + bT x + d , such that one can delete C with certainty when
gL > 0. This “bounding by infeasibility” step requires the determination of a lower bound
of a quadratic function on a simplicial set. As noted by [1,2], finding the exact minimum is a
hard problem (if not convex) and lower bounds can be constructed in several ways. Actually
for the infeasibility test neither the exact minimum, nor a lower bound is necessary.

Given vertex v with value g(v) > 0, one would like to know when taking a deviation step
r from v into the simplex that the value of g changes so much that it can drop below zero.
For a quadratic function the absolute change in value can be written as

|g(v + r) − g(v)| = |(v + r)T A(v + r) + bT r − vT Av|
= |r T (2A(v + 1

2
r) + b)| = |r T ∇g(v + 1

2
r)|. (11)

There are several ways to overestimate the absolute change. For y ∈ C the Lipschitzian view
gives

|r T ∇g(y)| ≤ ‖r‖ × ‖∇g(y)‖ ≤ Size(C) × L2(C), (12)

where L2(C) = maxy∈C ‖∇g(y)‖2 is a Euclidian Lipschitz constant over C and Size(C) the
longest edge according to the Euclidian norm. An alternative is to switch norm according to
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|r T ∇g(y)| =
∣
∣
∣
∣
∣
∣

∑

j

r j
∂g

∂x j
(y)

∣
∣
∣
∣
∣
∣
≤

∑

j

|r j | ×
∣
∣
∣
∣

∂g

∂x j
(y)

∣
∣
∣
∣

≤ max
j

|r j | ×
∑

j

∣
∣
∣
∣

∂g

∂x j
(y)

∣
∣
∣
∣ ≤ Size∞(C) × L∞(C), (13)

where L∞(C) = maxy∈C ‖∇g(y)‖1 and Size∞(C) is the longest edge according to the
infinity norm. The maximum gradient length (L2 as well as L∞) can be determined by
considering the values in the vertices, as it implies maximising a convex function over a
simplex.

This estimation can be made sharper, by considering in (12) that in fact r moves into the
plane of the unit simplex. This means, one can take for the Lipschitz constant the maximum
norm over the partial derivatives that are perpendicular to the all ones vector 1. To say it in
another way, instead of taking for L(C) the maximum norm of ∇g(y), one takes the norm
of the projection p of ∇g(y) on the unit simplex. Let γ = ∇g(y), then

p = γ − 1

n
1T γ 1. (14)

This means that instead of basing the Lipschitz constant on the Euclidian length
√∑

γ 2
j of

γ = ∇g(y), we can base it on the maximum norm of the projected directional derivatives p,

being
√∑

γ 2
j − 1

n (
∑

γ j )2, which is obviously smaller.

Finally, the feasibility check reduces to labeling a simplex C infeasible with respect to g
if

max
v∈vertices(C)

g(v) − L(C) × Size(C) > 0. (15)

Equation 15 can be made sharper to achieve lower computational costs by considering

max
v∈vertices(C)

(

g(v) − L(C) × max
x∈C

‖v − x‖
)

> 0. (16)

Both equations have the typical Lipschitzian view that can also be found in attempts to apply
the Lipschitz constant in higher dimensions. Mladineo [13] derives a lower bound by equating
over x the cones ϕ j defined by:

ϕ j (x) = g(v j ) − L‖x − v j‖, (17)

for the n + 1 vertices v j of a simplicial region C in R
n . This leads to a set of equalities that

is not easy to solve. In [11] and [14] approximations of (17) are introduced over rectangular
regions for deriving lower bounds. More recently (in [3]) one can find results of applying the
underestimation via (15) and (16) on simplicial sets.

Consider again the grid search benchmark. One of the ideas to generate a grid over the
simplex is, that in some cases one can say with certainty that a feasible solution does not
exist. A sufficient but not necessary condition is given in the following theorem.

Theorem 1 Given unit simplex S, a regular grid defined by grid points v j with M points
per axis, gi quadratic functions with Lipschitz constants �i , i = 1, . . . , m and the problem
of finding solutions of D. If

max
i

gi (v j )

�i
>

√
2

M − 1
∀ j, (18)
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then S does not contain any feasible solution of D (S ∩ D = ∅).

Proof Given the grid over S

∀x ∈ S ∃ j ‖x − v j‖ ≤
√

2

M − 1
. (19)

Combining (18) and (19) gives

∀x ∈ S ∃i, j gi (x) ≥ gi (v j ) − �i‖x − v j‖ ≥ gi (v j ) − �i

√
2

M − 1
> 0. (20)

��
Equations 15 or 16 try to answer the question whether g(x) can reach a value lower than

zero on C if all of its vertices are infeasible with respect to g, i.e., g(v j ) > 0 for all vertices
v j . If for one of the vertices g(v j ) ≤ 0, the lower bounding question will not help to discard
the simplex. The infeasibility question can be made sharper by considering all requirements
gi (v) ≤ 0 simultaneously for i = 1, . . . , m, instead of considering the requirements individ-
ually. Let us consider the case when all vertices are infeasible for at least one of the functions,
gi (v j ) > 0. Around each vertex v j , a so-called infeasibility sphere B j is defined that cannot
contain a feasible point

B j = {x ∈ R
n, ‖x − v j‖2 < ρ2

j }. (21)

Two possible ways of calculating a value for ρ j will be discussed. First, based on constants:

�i (C) = max
v∈C

∥
∥
∥
∥∇gi (v) − 1T ∇gi (v)1

n

∥
∥
∥
∥ , (22)

one can derive infeasibility radii

ρl
j (C) = max

i

gi (v j )

�i (C)
. (23)

Notice that ρ = max j ρl
j > maxx∈C ‖v j − x‖ means that C is completely infeasible corre-

sponding to Eq. 16.
An infeasibility radius can also be derived from quadratic considerations based on the

following theorem.

Theorem 2 Given a quadratic function g(x) = xT Ax + bT x + d with a symmetric n by n
matrix A with the most negative eigenvalue η, b an n-vector and d a scalar. If g(v) > 0 then

g(v + r) > 0 for ‖r‖ <
‖∇g(v)‖−

√
‖∇g(v)‖2−4ηg(v)

2η
.

Proof

g(v + r) = (v + r)T A(v + r) + bT (v + r) + d

= g(v) + r T (2Av + b) + r T Ar

≥ g(v) − ‖r‖‖∇g(v)‖ + η‖r‖2 (24)

Solving over ρ

g(v) − ρ‖∇g(v)‖ + ηρ2 = 0 (25)

gives as positive root ρ = ‖∇g(v)‖−
√

‖∇g(v)‖2−4ηg(v)

2η
.

Given g(v) > 0 leads to g(v + r) > 0 in (24) for ‖r‖ < ρ. ��

123



J Glob Optim (2007) 39:577–593 585

To derive infeasibility spheres using Theorem 2, we have to determine the lowest ei-
genvalues η1, . . . , ηm of A1, . . . , Am . Notice that if the function gi is convex, the smallest
eigenvalue is positive and Theorem 2 does not apply. The quadratic infeasibility radii are
given by:

ρ
q
j = max

i wi th ηi <0

‖∇gi (v j )‖ −
√

‖∇gi (v j )‖2 − 4ηi gi (v j )

2ηi
. (26)

For more negative curvature, i.e., ηi is more negative, the radius is smaller. Therefore less
negative values of η are better. Similar to the projection of the gradient, one can improve its
value because the deviating point x + r , or its projection, is moving over the unit simplex.
This means, it is sufficient to consider the most negative eigenvalue of matrix PT AP , when
the projection matrix P is given by

P = 1

n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n − 1 −1 . . −1

−1 n − 1
. . . . .

.
. . .

. . .
. . . .

. .
. . . n − 1 −1

−1 . . −1 n − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (27)

Finally, to get the largest infeasibility sphere at vertex j , we take:

ρ j = max{ρl
j (C), ρ

q
j }. (28)

The idea of infeasibility spheres handles well the concept of considering several constraint
functions at the same time. To go one step further, we can also consider the infeasibility
spheres B j of all vertices simultaneously. For the Branch-and-Bound algorithm, the question
can be shifted to covering by what we call the raspberry set Rasp(C) = ∪ j B j (see [5]). In
the algorithm, the (in)feasibility check can be done by answering the question: does Rasp(C)

cover set C , i.e., is C ⊂ Rasp(C)? It is not straightforward to answer this question. To check
this, one could look for a point in C \ Rasp(C). However, the following theorem, illustrated
by Fig. 3, shows that it is sufficient to look—the other way around—for a point that is covered
by all infeasibility spheres.

Fig. 3 Polytope covered by
raspberry set

x

v1

v2

v3

v4

v5
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Theorem 3 Given a set V =conv{v1, . . . , vh}, with v1, . . . , vh the extreme points of V (ver-
tices). Let each vertex v j be infeasible, i.e., maxi gi (v j ) > 0 with corresponding infeasibility
sphere B j defined by (21). If ∃x ∈ ∩ j B j ∩ V then V ⊂ ∪ j B j and consequently no feasible
point exists in V .

Proof Assume that ∃y ∈ V such that y /∈ ∪ j B j . We will show that this assumption leads to a
contradiction. Define the vector r = y−x as the direction of stepping from point x to the point
y that is assumed not to be covered. Moreover, we will consider point z = x+y

2 = x + 1
2r that

is in the middle of x and y. From x ∈ ∩ j B j and y /∈ ∪B j follows that ∀ j ‖y − v j‖2 ≥ ρ2
j

and ‖x − v j‖2 < ρ2
j . Walking from one point to the other gives a mean-value result:

‖y − v j‖2 = (x + r − v j )
T (x + r − v j )

= (x − v j )
T (x − v j ) + 2r T (x − v j ) + r T r

= ‖x − v j‖2 + 2r T (x + 1

2
r − v j ) < ρ2

j + 2r T (z − v j ). (29)

Combining ‖y − v j‖2 ≥ ρ2
j with (29) leads to the conclusion that

2r T (z − v j ) > 0, j = 1, . . . , h. (30)

Equation 30 tells us that the assumption of the existence of y leads to the appearance of a
point z ∈ V and a direction r such that the directional derivative with respect to the squared
distance function is positive with respect to all vertices v1, . . . , vh . This means that walking
from z in direction r makes us go further away from all vertices simultaneously. This is in
contradiction with z being in V .

More exactly, function f (a) = r T a is linear in a and therefore attains its maximum over
polytope V in one of the vertices vp . For that vertex, maxa∈V 2r T (a − vp) = 0 such that
Eq. 30 cannot be true for at least one vertex v j . This means that a point y with y /∈ B j∀ j
cannot exist in set V . ��

Theorem 3 shows that in order to prove infeasibility of C , it is sufficient to find a point
x ∈ C that for each vertex v j is closer than ρ j . One can make a good guess by taking a
weighted average

ξ = 1
∑

j
1
ρ j

∑

j

v j

ρ j
(31)

and test whether ‖ξ − v j‖2 < ρ2
j for each vertex v j . If ξ is not covered by the smallest

sphere, i.e., ‖ξ − vk‖2 ≥ ρ2
k with k = arg min j ρ j , one would like to suggest another trial

point. It can be obtained heuristically by walking in the direction of vk and generating a point
θ that is at least covered by the smallest sphere:

θ = vk + (ρk − δ)
ξ − vk

‖ξ − vk‖ , (32)

where δ is a small positive accuracy number, such that θ is just within the interior.
The theory is used to derive the following tests for proving infeasibility of subset C :

– The LITest (Linear Infeasibility Test) consists of eliminating a simplex C in case for one
of the linear constraints all its vertices are infeasible.
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– The SCTest (Single sphere Cover Test) proves that a simplex is infeasible because it is
completely covered by an infeasibility sphere. So the SCTest consists of determining a
vertex vk satisfying ρk > maxx∈C ‖vk − x‖.

– The NCTest (N spheres Cover Test) tries to determine if a simplex C is completely cov-
ered by the set of all infeasibility spheres B j ; i.e., C ⊂ ∪ j B j . It is basically the practical
application of Theorem 3 using the point defined by Eqs. 31 and 32.

– The PCTest is applied when the SCTest and NCTest fail. Either ξ or θ (if infeasible) is
used to generate an infeasibility sphere centered in it which is then checked to cover C .

– A simplex with an infeasible point x such that max j ‖x − v j‖ < ε, cannot contain an
ε-robust solution. The ε-infeasibility test checks this condition for all vertices and the
point ξ or θ .

4 ε-robustness determination

Robustness R(x) of a design x with respect to set D has been introduced in Eq. 7. For
quadratic inequalities it is not easy to determine the nearest infeasible point to x , such that
algorithms as described in [4] are needed. We are merely interested in generating ε-robust
solutions. Although the algorithm does not guarantee to find such points, one can generate a
valid lower bound RL(x) on the robustness. If the lower bound RL(x) is larger than ε, point x
is ε-robust. Similar to (15) one can define for a feasible point x with gi (x) < 0, i = 1, . . . , m

RL
� (x) = min

i

−gi (x)

�i
. (33)

As long as ‖h‖ is smaller than RL
� (x) then gi (x + h) ≤ gi (x) + �i‖h‖ ≤ 0 and point x + h

fulfills all constraints. For �i one can take the maximum Euclidian length of the projected
gradient over the unit simplex S.

Alternatively, in the line of Theorem 2, one can base a lower bound on the quadratic shape
of the function

g(x + h) = (x + h)T A(x + h) + bT (x + h) + d

= g(x) + hT (2Ax + b) + hT Ah

≤ g(x) + ‖h‖‖∇g(x)‖ + µ‖h‖2, (34)

where µ is the largest eigenvalue of A. Solving for maximum step size ‖h‖ equating the
overestimation (34) to 0, gives a lower bound RL

Q for the maximum step size of ‖h‖ such
that x + h is still feasible with respect to the quadratic constraint. To be more specific, we
determine the maximum eigenvalues µi of Ai and compute the lower bound robustness based
on quadratic considerations as

RL
Q(x) = min

i : µi >0

−‖∇gi (x)‖ + √‖∇gi (x)‖2 − 4µgi (x)

2µ
. (35)

This shows more clearly that if second derivatives are large, the robustness estimation is
worse. Therefore smaller values of µ are better. Similar to the projection of the gradient,
one can slightly improve its value considering that point x + h (or its projection) is moving
over the unit simplex. This means, it is sufficient to consider the largest eigenvalue of matrix
PT AP , where the projection matrix P is given by Eq. 27. The lower bound on the robustness
RL(x) is taken as max{RL

� , RL
Q} to be confronted with the ε-robustness that one intends to

reach.
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Fig. 4 One of the iterations of the B&B algorithm for RumCoke. The graph at the right is a zoom of the graph
at the left in the figure

The solution provided as output of Algorithm 1 (if any) is a point x such that x ∈ X ∩ D
meets the condition RL(x) ≥ ε with the lowest cost found.

5 Illustrative examples

The algorithm was used in a larger context of the practical product design project, where
application to larger instances saved hours of calculation time (see [8]). For the illustration,
two 3-dimensional cases were modified from [6]. The data are given in Appendix 2. The
advantage of the three-dimensional cases is that the algorithm execution can be graphically
represented. The first case, called RumCoke (RC), is an example to illustrate mixture design
with two quadratic constraints. The second case, Case-2 (C2), was taken from an industrial
example having five quadratic constraints. The algorithm was also run on larger cases from
industry, where we took one of the cases to illustrate the contribution of the developed theory.
A standard test set for performance comparison of cases for problem (8) does not exist yet
in the literature.

Figure 4 shows one of the iterations of the algorithm for RumCoke. Each requirement has
been represented by a different dashed line (and colour). Each infeasible sphere (21) has been
represented by the same dashed (and coloured) line as its corresponding quadratic constraint.
The simplices currently on list � are given in grey. Focusing on the white simplex that is
currently evaluated, one can observe that none of the spheres individually covers the simplex
completely. Weighted average ξ is not covered by all spheres, but modified point θ , close to
the boundary of the smallest sphere, is covered, so this simplex is eliminated by the NCTest.

The next step is to have the B&B results comparable with evaluating the points on a reg-
ular grid. For the illustration, we will use the bisection process until every axis is bisected
K times. Values of K used in the illustration are: K = 8, K = 9, and K = 10, such that
the corresponding mesh size is ( 1

2 )K ( 1
256 , 1

512 , and 1
1024 ), implying M = 2K + 1 points per

axis (M = 257, M = 513, and M = 1025). This means that the corresponding grids contain
33153, 131841 and 525825 vertices, respectively. In the algorithm, to obtain the depth of
K , one should—working with Euclidian norm—apply an accuracy α somewhere in between√

2
2K−1 and

√
2

2K . Table 1 shows results for a robustness of ε = 0.01 when the accuracy α is
varied. For all the values of α tested in our experiments the algorithm has found a robust
solution.

The Branch-and-Bound algorithm evaluates points and stores vertices (points) and sim-
plices that need to be explored further. Table 1 gives the value of the cost function of the
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Table 1 Regular mesh vs. Branch-and-Bound algorithm ε = 0.01, (n = 3)

Regular Grid Branch-and-Bound

K M Vertex α Vertex Simplex Cost

RC C2 RC C2 RC C2

8 257 33,153 0.0075 170 221 389 499 0.6104 1.3965
9 513 131,841 0.0050 161 493 373 220 0.5916 1.3813

10 1,025 525,825 0.0020 199 254 465 577 0.5753 1.3691

Table 2 Efficiency of Theorem 3, ε = 0.005

Problem B&B with Theorem 3 Without Theorem 3

RumCoke Case2 UniSpec RumCoke Case2 UniSpec

NSimplex 373 493 7.9 106 403 599 8.9 106

NVertex 183 241 2.6 106 199 293 2.9 106

ε-infeas. 52 88 54 100
Cutoff 45 17 326 103 47 19 356 103

LITest 3 226 103 3 279 103

SCTest 42 74 1,022 103 64 143 1,747 103

Thrm 3 11 30 545 103

best robust design found (column Cost) and the number of evaluated points (column Vertex)
and simplices (column Simplex) to reach the result for problems RumCoke (column RC)
and Case 2 (column C2). It can also be seen that increasing the value of the accuracy, the
algorithm is able to obtain solutions with better cost function values. The efficiency of the
B&B algorithm looks promising. For both problems the number of vertices evaluated by
the B&B algorithm is between 340 and 2,300 times less than the number of vertices on the
corresponding regular grid. Additional computational effort is necessary to evaluate the set
of generated simplices. Once an ε-robust solution has been found, the cutoff test with respect
to cost starts working.

A next task is to measure the effect of the introduced new theoretical results. Actually,
the idea of infeasibility spheres is new as such, but close to earlier introduced conical ideas
based on Lipschitz constants. The question is now what Theorem 3 adds to the algorithm.
It introduces the N spheres Cover Test and generates interior points θ and ξ . These points
are evaluated and possibly used again to perform an ε infeasibility test (are all points of the
simplex closer than ε to the point?) or alternatively to construct an infeasibility sphere (the
PCTest). What happens to the algorithm when we leave out these tests derived from Theorem
3? To measure this, the algorithm is run with and without the corresponding tests and the
efficiency in number of evaluated and rejected simplices and vertices is measured. The result
can be observed in Table 2.

The cases used, are the illustrative cases RumCoke and Case 2 and a seven-dimen-
sional industrial problem taken from Unilever Research called UniSpec. The number of
evaluated simplices (NSimplex) and vertices (NVertex) is measured. The disposed simpli-
ces due to ε-infeasibility with respect to vertices, objective function bounding (Cutoff),
Single Cover Test, Linear infeasibility and the tests due to Theorem 3 (Thrm 3) is noted
for the three cases using a robustness ε = 0.005. For the three-dimensional cases, an
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accuracy of α = 0.005 was taken. One can observe for these cases, where the total num-
ber of evaluations is low, that Theorem 3 leads to a reduction of evaluations of some 5–
20%. In total, less subsets are being rejected by the other tests, because part of the search
space is discarded by the N spheres Cover Test. The larger dimensional case was run with
an accuracy α = 0.05. Millions of subsets are generated and vertices are evaluated cor-
responding to megabytes of storage requirements. The savings due to application of the
results of Theorem 3, are of the same order of magnitude as for the lower dimensional
cases.

6 Conclusions

This paper shows that a Branch-and-Bound algorithm based on bisection over the longest
edge with an accuracy stopping rule, in our case on size α, generates points on a regular grid.
From this viewpoint, a Branch-and-Bound algorithm tries not to evaluate all grid points by
removing areas where the optimal solution is proven not to be located. Theoretical results on
generating infeasibility spheres have been presented. A new result on how to combine these
spheres to prove infeasibility of a polytope has been discussed. Moreover, the results have
been implemented in practical computational tests.

Based on these tests, a Branch-and-Bound algorithm to find robust solutions of a mixture
design problem has been presented. The algorithm is able to detect cases that do not contain
ε-feasible solutions. The new aspect of the algorithm is that it guarantees that the generated
solutions, if any, are ε-robust. More specifically, the algorithm can return three different kinds
of results.

– The output of the algorithm is an approximation of the best ε-robust solution. The approx-
imation becomes better if the accuracy α goes to zero.

– The algorithm returns: “No solution exists”. The algorithm has proven that no ε-feasible
solution exists.

– The third possible output of the algorithm is: “No solution found”, which means no robust
solution has been found, but in theory it may exist.

The whole has been illustrated with low dimensional design problems. Applying the ideas
presented here in a larger project, the number of points evaluated by the algorithm and the
storage requirements for generating the same result have been reduced considerably.

Acknowledgements This work has been partially supported by the Ministry of Education and Science of
Spain through grant TIN2005-00447.

Appendix 1

A regular grid with accuracy α = 1
M−1 can be generated by the recursive procedure

GiveV alue(M, n) over the unit simplex, where M is the number of grid points per axis.
The resulting number of points is very high for a reasonable accuracy. This is illustrated in
Table 3, where the number of points on the regular grid is given for M = 11 and M = 101.
The number of points results as well from Algorithm 4 as from Eq. 9.
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Table 3 Number of regular grid points on the unit simplex

M n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

11 11 66 286 1,001 3,003 8,008
101 101 5151 176,851 4.6 106 9.7 107 1.7 109

Algorithm 4 : Grid on a simplex
Funct GiveValue (P, m)

1. for k = 0 to (P − 1)

2. xm = αk
3. if m ≥ 3
4. GiveValue(P − k, m − 1)
5. x1 = 1 − ∑n

j=2 x j
6. return x1, . . . , xn

Appendix 2: Illustrative cases

RumCoke
Dimension = 3; Raw material cost = {0.1, 0.7, 4.0}
Linear Constraints:

h1(x) = −1.5x1 + 0.5x2 − 0.5x3 ≥ 0.0

h2(x) = 0.3x1 − 0.5x2 − 0.3x3 ≥ 0.0

Quadratic constraints (gi (x) = xT Ai x + bT
i x + di ≤ 0 i = 1, 2):

A1[3 × 3] = {0,−16, 0,−16, 0, 0, 0, 0, 0}
b1[3 × 1] = {8, 8, 0}; d1 = −1

A2[3 × 3] = {10, 0, 2, 0, 0, 0, 2, 0, 2}
b2[3 × 1] = {−12, 0,−4}; d2 = 3.7

Case2
Dimension = 3; Raw material cost = {1.1,1.7,2.0}
Quadratic constraints (gi (x) = xT Ai x + bT

i x + di ≤ 0 i = 1, . . . , 5):

A1[3 × 3] = {0.001,−0.001, 0.0085,−0.001, 0.008,−0.0105, 0.0085,−0.0105,−0.021}
b1[3 × 1] = {−0.0145,−0.0205, 0.073}; d1 = −0.0165

A2[3 × 3] = {−0.004, 0.0005, 0.002, 0.0005,−0.001,−0.003, 0.002,−0.003, 0.014}
b2[3 × 1] = {0.0155, 0.0515,−0.121}; d2 = −0.006

A3[3 × 3] = {20.605,−5.087,−10.9885,−5.087, 32.003,−43.476,−10.9885,−43.476,

−81.278}
b3[3 × 1] = {0.1995,−0.097, 126.7685}; d3 = −20.5063

A4[3 × 3] = {0.766,−0.1205, 2.4735,−0.1205, 0.528, 1.9835, 2.4735, 1.9835,−7.822}
b4[3 × 1] = {−2.432,−15.191, 10.712}; d4 = 3.21125
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A5[3 × 3] = {116.75,−3.09, 168.553,−3.09,−67.424, 515.114, 168.553, 515.114,

−845.215}
b5[3 × 1] = {−287.43,−645.926, 354.537}; d5 = 115.0953

UniSpec
Dimension = 7; Raw material cost = (114, 115, 107, 127, 115, 106, 108)
Linear Contraint:

h1(x) = 0.1493x1 + 0.6927x2 + 0.4643x3 + 0.7975x4 + 0.5967x5 + 0.6235x6

+0.5284x7 ≥ 0.35

Quadratic constraints (gi (x) = xT Ai x + bT
i x + di ≤ 0; i = 1, 2, 3):

A1[7 × 7] = (−1.473, 8.215,−27.204, 46.119, 2.059,−11.929,−12.768, 8.215,

37.733346, 5.127, 95.691, 34.954, 20.165, 19.445,−27.204, 5.127,−21.743, 36.843,

−7.126, 4.029,−4.152, 46.119, 95.691, 36.843, 189.643, 93.359, 52.904,

54.802, 2.059, 34.954,−7.126, 93.356, 31.885, 7.528, 10.248,−11.929, 20.165,

4.029, 52.904, 7.528, 11.951, 10.964,−12.768, 19.445,−4.152, 54.802, 10.248,

10.964, 7.197)

b1[7 × 1] = (4.5675, 34.7289, 70.5707,−82.2761, 29.3169, 71.0818, 63.7614);
d1 = −35

A2[7 × 7] = (1.35,−4.41, 17.60,−92.45, 2.74,−29.94,−14.05,−4.41,−39.13,

−6.11,−126.38,−29.81,−63.42,−43.97, 17.60,−6.11, 15.45,−76.60, 5.93,−44.05,

−20.54,−92.45,−126.38,−76.60,−240.64,−117.46,−125.18,−114.98, 2.74,

−29.81, 5.93,−117.46,−22.90,−47.37,−30.68,−29.94,−63.42,−44.05,−125.18,

−47.37,−73.39,−73.99,−14.05,−43.97,−20.54,−114.98,−30.68,−73.99,−55.33)

b2[7 × 1] = (−2.1232,−9.0403,−42.2072, 190.5292,−9.9529, 1.8162, 5.1622);
d2 = 10

A3[7 × 7] = (−0.670, 4.284,−12.837, 23.708, 1.677,−8.964,−4.859, 4.284, 21.380,

−1.188, 28.990, 13.216, 17.177, 16.620,−12.837,−1.189,−21.376, 9.841,−7.298,

−10.043,−8.981, 23.708, 28.990, 9.841, 49.385, 25.574, 15.561, 21.666, 1.677,

13.216,−7.298, 25.574, 8.419, 4.149, 6.595,−8.965, 17.177,−10.043, 15.561,

4.149, 1.090, 6.292,−4.859, 16.620,−8.981, 21.666, 6.594, 6.292, 5.906)

b3[7 × 1] = (0.7097,−13.0982, 27.5078,−49.1608,−7.3725, 33.6731, 11.3136);
d3 = −2
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